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Abstract
Two gold powder samples, one with average crystallite size of ≈30 nm (n-
Au) and another with ≈120 nm (c-Au), were compressed under nonhydrostatic
conditions in a diamond anvil cell to different pressures up to ≈60 GPa and the
x-ray diffraction patterns recorded. The difference between the axial and radial
stress components (a measure of the compressive strength) was estimated from
the shifts of the diffraction lines. The maximum micro-stress in the crystallites
(another measure of the compressive strength) and grain size (crystallite size)
were obtained from analysis of the line-width data. The strengths obtained by
the two methods agreed well and increased with increasing pressure. Over the
entire pressure range, the strength of n-Au was found to be significantly higher
than that of c-Au. The grain sizes of both n-Au and c-Au decreased under
pressure. This decrease was much larger than expected from the compressibility
effect and was found to be reversible. An equation derived from the dislocation
theory that predicts the dependence of strength on the grain size and the shear
modulus was used to interpret the strength data. The strength derived from the
published grain size versus hardness data agreed well with the present results.

1. Introduction

Compression of a solid without a pressure-transmitting medium in a diamond anvil cell (DAC)
results in a nonhydrostatic stress state. The macroscopic stress state at the centre of the
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sample is axially symmetric about the load axis of the DAC and the difference between the
axial and radial stress components (t) is taken as a measure of the compressive strength of
the sample material at a pressure that equals the mean normal stress [1]. It is possible to
derive t and the single-crystal elastic constants by analysing the high-pressure diffraction
patterns using the approach developed in earlier works [2–9]. The experimental studies [10–30]
provide examples of the in-depth information that such analyses offer. The maximum micro-
stress 2pmax [31] (another measure of strength) and the grain size (crystallite size) can be
derived from the diffraction line-width data (e.g. [32–35]). The estimation of 2pmax from
high-pressure diffraction data has received limited attention [36–39]. The possibility of the
grain (crystallite) size changing under nonhydrostatic compression and influencing the strength
has long been ignored. A recent study [40] on magnesium oxide reported the reduction in
grain size on compression in a DAC and the resulting increase in t . Similar observations
were reported subsequently on magnesium oxide compressed in a multi-anvil device [41].
Though consideration of the yield criterion [1] suggests that t is a measure of compressive
yield strength, this parameter has not been compared in the past with the strength obtained by
another method. Further, both t and 2pmax have been taken as measures of compressive strength
and their equivalence implicitly assumed. In the present study, we compressed to ≈60 GPa two
samples of gold powder with average crystallite sizes of ≈30 nm (n-Au) and ≈120 nm (c-
Au) in a DAC and recorded the x-ray diffraction patterns. The t-values at different pressures
were derived from the line shift data, and 2 pmax and the grain size from the line width data.
The results were analysed using a dislocation theory based equation that predicts the pressure
(through the shear modulus) and grain-size dependences of strength. The values of t and 2pmax

were compared. The grain-size dependence of strength derived from 2pmax was compared with
the strength derived from the published one-atmosphere grain size versus hardness data [42] in
order to ascertain that the parameters 2pmax and t do represent compressive strength.

2. Experimental details

The powder samples of nanocrystalline gold (n-Au) from Nanomat Inc, Pennsylvania, USA and
coarser-grained gold (c-Au) of high purity from Goodfellow Corporation, Pennsylvania, USA
were used in the present study. The crystallite size and the micro-strains in the starting samples
were determined using high-quality diffraction patterns taken with a Philips diffractometer
using Cu Kα radiation. In a typical high-pressure diffraction experiment, the powder sample
contained in a stainless-steel gasket, 400 µm thick with a 40 µm thick indented region and a
hole diameter of 125 µm, was compressed in a DAC. No pressure-transmitting medium was
used to maximize the nonhydrostatic stress state. The high-pressure diffraction experiments
were conducted at the HPCAT synchrotron beam line at the Advanced Photon Source (APS),
Chicago. The experiments on c-Au and n-Au were conducted at different times and the
available primary x-ray beam wavelength λ was 0.038 51 nm for n-Au samples and 0.040 84 nm
for c-Au samples. The beam size in both sets of experiments was 20 µm. The x-ray diffraction
patterns were recorded on an image plate using the conventional DAC geometry, wherein the
primary x-ray beam is parallel to the load axis. Typical diffraction patterns are shown in
figure 1. The positions and widths (full width at half maximum, FWHM) of the diffraction
peaks were obtained by fitting a four-parameter pseudo-Voigt function to each peak.

3. Method of data analysis

The sample, on compression between the anvils, undergoes considerable plastic deformation
before the complex equilibrium stress state is established. The macro-stress component causes
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Figure 1. Diffraction patterns (a) and (b) are from n-Au at 55 GPa and 3.3 GPa, respectively; λ =
0.038 51 nm. (c) and (d) are from c-Au at 58.8 GPa and 0.2 GPa, respectively; λ = 0.040 84 nm.

the shift of the diffraction lines, while the micro-stresses cause line broadening. The macro-
stresses at the centre of the sample are considerably simpler to describe, because of the axial
symmetry that exists about the load axis of the DAC. The difference between the axial and
radial stress components (t) has been suggested as a measure of the yield strength of the
sample material [1]. The detailed analyses given earlier [3, 6, 8] show that the lattice parameter
am(hkl) of the cubic system, computed from the measured line positions 2θhkl taken with the
conventional DAC geometry, is given by the following relation:

am(hkl) = M0 + M1[3(1 − 3 sin2 θhkl)�(hkl)], (1)

where,

�(hkl) = (h2k2 + k2l2 + l2h2)/(h2 + k2 + l2)2. (2)

M0 and M1 are constants at a given pressure and are functions of t , the lattice parameter,
and single-crystal elastic compliances Si j , all the quantities being at equivalent hydrostatic
pressure that equals the mean normal stress. At a given pressure, the plot of am(hkl) against
3(1 − 3 sin2 θhkl )�(hkl), referred to as the gamma-plot, is a straight line. The parameters M0

and M1 can be determined from such plots. Knowing Si j at the relevant pressure, t can be
computed from the relation,

t = −3M1/αM0(S11 − S12 − S44/2). (3)

The details of this method are discussed in an earlier publication [8]. The term α decides
the relative weights of the iso-stress and iso-strain conditions. In many studies [25, 26],
the assumption of α = 1 under high-pressure conditions is found to yield satisfactory
results. However, the elastic anisotropy of gold [21] determined from the high-pressure x-ray
diffraction data was found to agree well with the results from ultrasonic velocity measurement
if α ∼= 0.5 was assumed. Following this result, we assume α = 0.5 in the present analysis. The
assumptions underlying the lattice strain equations are discussed later in the paper.

Stokes et al [31] proposed a model for the micro-stresses in the deformed crystallites and
discussed its effect on the line broadening. We extend this model for the high-pressure case by
assuming that the stresses in the crystallites occur with equal probability between a minimum
and a maximum and identify the difference between the two with the maximum stress 2pmax

in the theory of Stokes et al [31]. The standard equation [32] describing the grain-size and
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micro-strain dependences of the line width was modified by Singh [28, 40] for the analysis of
high-pressure diffraction data as follows:

(2whkl cos θhkl)
2 = (λ/d)2 + [4pmax/Ehkl ]2 sin2 θhkl . (4)

2whkl is the FWHM on 2θ -scale. Ehkl is the single-crystal Young’s modulus in the direction
[hkl] and d is the crystallite (grain) size. Equation (4) is strictly valid for Gaussian profiles.

4. Results and discussion

The lattice strain theories [2–8] for the analysis of the diffraction data under nonhydrostatic
compression were derived using an averaging procedure that assumed random orientation of the
crystallites in the polycrystalline sample. This assumption is certainly not valid, as the sample
undergoes considerable plastic deformation on compression, resulting in texture (preferred
orientation). Though the theories with this underlying assumption were successful in explaining
almost all the features observed in the diffraction data, quantitative deviations were observed
in the single-crystal elastic moduli, particularly in the case of the hexagonal system [43]. The
presence of texture was suspected as the reason [44]. The studies on MgO [26] and epsilon-
iron [29] used elasto-plastic modelling to solve the equations in a self-consistent manner. It has
been shown [45] that t for epsilon-iron determined using earlier theory is in excellent agreement
with those obtained using elasto-plastic modelling [29]. Similar agreement was observed for
the case of MgO [40]. The solution of t from the lattice strain equations is robust and is not
affected greatly by this assumption or by the neglect of elasto-plastic effects.

The strains measured from the shift of the diffraction lines and the stresses computed
as a result are essentially elastic in nature, as supported by the fact that the strains vanish on
decompressing the sample to ambient pressure. This justified the assumption that the stress state
was described adequately by a state that lay between the Voigt and Reuss limits. The choice of
α between 0 and 1 was therefore used in the development of the lattice strain theories [2–8].
A recent study [46] suggested that α > 1 in the plastic deformation regime. An article in this
volume [47] discusses the elasto-plastic model. As discussed following equation (3), α = 0.5
is used in the present analysis. Since t is invariably small, linear elasticity was used to derive
the equations that connect strain with t .

The grain size and the micro-strains in the starting powder samples were determined by
analysing the FWHM determined from diffractometer records using the simplified approach
suggested by Langford [31]. This gave 120±15 nm and 33±3 nm for the d of c-Au and n-Au,
respectively. The errors indicated are the standard errors. The micro-strains were 0.8×10−3 and
1.8×10−3 for c-Au and n-Au, respectively. Langford’s method is based on the assumption that
the diffraction profiles are Gaussian. In general, the profiles contain a significant contribution
from the Lorentzian term. For this reason, a more rigorous method based on integral widths [34]
was also used to determine d and micro-strains. The results from the two methods did not
differ significantly. The quality of high-pressure diffraction line profiles was not high enough
to permit the use of more rigorous methods [33].

Figure 2 shows typical gamma-plots. The single-crystal elastic compliances at high
pressures required in equation (3) were estimated using one-atmosphere values of single-crystal
elastic moduli and their pressure derivatives [48] in the Birch equations [49]. Implicit in the
present analysis is the assumption that the elastic moduli of the crystalline region do not change
on reducing the grain size down to a few tens of nanometres. This assumption is supported
by the results of many studies. For example, the measurements of Young’s modulus [50] on
low-porosity bulk samples of nanocrystalline Cu and Pd showed only a small decrease from
the value for coarse-grained samples. This decrease was attributed to the presence of residual



Nonhydrostatic compression of gold powder to 60 GPa in a diamond anvil cell S973

3(1-3sin2θ)Γ(hkl)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

a m
(h

kl
)  

3.75

3.80

3.85
4.05

4.10

(a)

(b)

(c)

(d)

Figure 2. Typical gamma-plots. Labels (a)–(d) are the same as in figure 1. The error bars are much
smaller than the symbol sizes.
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Figure 3. Typical (2whkl cos θhkl )
2 versus (sin θhkl/Ehkl )

2 plots. Labels (a)–(d) are the same as in
figure 1. 2whkl is in radians. The error bars are smaller than the symbol sizes.

porosity in the samples. Further, the high-pressure x-ray diffraction measurements and the first-
principles calculations [51] on nanocrystalline nickel showed no significant difference between
the bulk moduli of nano-sized and large-grained nickel crystallites. Similar conclusions were
drawn from the experiments on nanocrystalline (10 nm) iron samples [52]. Recent atomistic
calculations of the elastic properties of metallic face-centered cubic nanocrystals [53, 54] show
that the material length scale for elasticity is well below 10 nm, implying that the size effect on
elasticity becomes important only for grain sizes below 10 nm. The line widths were analysed
using equation (4). Figure 3 shows the typical plots resulting from equation (4). The d and
2pmax were calculated from such plots.

Figure 4 shows the pressure dependence of d . Large errors in the estimations of d occur
mainly because short-wavelength x-rays are used in the high-pressure diffraction experiments.
The data are to 58.8 GPa for c-Au and to 55 GPa for n-Au. The trend line fitted to d versus
pressure data suggests that the computed grain size in c-Au decreases from 120 ± 50 nm at
ambient pressure (0.1 MPa) to 49 ± 10 nm at 60 GPa. The d in n-Au decreases from 33 ± 7 nm
at 0.1 MPa to 9 ± 2 nm at 60 GPa. In both cases, the decrease in d under pressure is much
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Figure 4. Variation of the crystallite size with pressure. Unfilled squares and hexagons indicate
data on pressure release. For clarity, error bars on n-Au data are not shown. Error bars on either
side equal the standard errors.

larger than the decrease expected solely from the compressibility of gold. For example, the
compressibility of gold gives only a ≈6% decrease in d when pressure is increased from
0.1 MPa to 60 GPa. The measurements after decreasing the pressure from ≈60 to ≈1 GPa
suggest that the observed grain-size reduction under pressure is reversible. The crystallites of
a highly ductile gold are not expected to comminute during pressurization and, therefore, a
permanent change in d is not expected. It is likely that localized stress gradients develop on
compression and subdivide the crystallites into smaller coherently scattering domains that are
interpreted from the line-width analysis as the grain size. Since the stress gradients relax on
the release of pressure, the grain size reverts back to the initial value. A fuller explanation
must await further studies of this nature. The observation of reversible grain-size reduction is
not likely to be an artifact of the data analysis, because the same method of analysis gave a
permanent grain-size reduction in MgO [40].

The pressure in the sample under nonhydrostatic compression develops a radial pressure
gradient. The pressure gradients produce varying strain gradients in the sample. Since the
primary beam has non-zero cross-sectional area (20 µm diameter in the present experiments),
the diffraction pattern arises from the region of lattice-strain gradient. This causes the
diffraction lines to broaden. This broadening arises due to the variations in lattice strain and
will exhibit tan θ -dependence. Thus, the width from pressure gradients will contribute to micro-
strains and consequently to 2 pmax. A rigorous analysis of the effect of pressure gradients on
the diffraction profiles can be carried out using the approach developed earlier [55]. Such an
analysis is not possible in the present case, as many of the parameters required for the analysis
were not measured in the present experiments. The possibility of axially symmetric pressure
gradients causing a subdivision of the coherently scattered domains cannot be ruled out. In
such a case, a contribution to the width varying as 1/ cos θ will arise and affect the grain-size
estimation.

The changes in the grain size arise from at least two distinct sources. The change due to the
compressibility effect is the intrinsic material property and is small for most solids. The major
change arises from the deformation of the sample during nonhydrostatic compression. The
magnitude of the effect depends on the extent of deformation that the sample undergoes before
a given pressure is established. The grains in brittle materials comminute on nonhydrostatic
compression and the reduction in grain size is irreversible, while extremely ductile materials,
like Au, appear to undergo reversible grain-size reduction. Application of truly hydrostatic
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Figure 5. The pressure dependence of strength. The t and 2 pmax are shown by unfilled and filled
symbols, respectively. Unfilled squares and hexagons indicate data on pressure release.

pressure will produce negligible changes in the grain size and line widths. The results of
diffraction experiments under hydrostatic pressure [56] support this conclusion. Thus, the
measured grain size is not a unique function of pressure under nonhydrostatic compression.

Figure 5 shows the pressure dependences of t and 2pmax. The two measures of strength
give comparable results. The trend line through combined t and 2pmax versus pressure data
suggest that the strength of c-Au increases from 0.12 ± 0.04 GPa at 0.1 MPa to 1.1 ± 0.12 GPa
at 60 GPa. For n-Au, the strength increases from 0.4 ± 0.06 GPa at 0.1 MPa to 3.7 ± 0.4 GPa
at 60 GPa. The strength decreases rapidly below 5 GPa for both c-Au and n-Au, and therefore
the actual strength at 0.1 MPa is much lower than those calculated from the trend lines. The
measurements after reducing the pressure from 60 GPa to ≈1 GPa suggest that the pressure
dependence of strength is reversible.

The pressure enhancement of strength under nonhydrostatic compression arises from two
distinct factors. One is the intrinsic pressure effect, which is present under truly hydrostatic
pressure, and is related to the shear modulus increase under pressure. The second factor is
grain-size strengthening. The form of the equation connecting strength with shear modulus
and grain size depends on the grain size. For samples with grain sizes in excess of 1 µm, the
deformation is controlled by the dislocation motion. In this grain-size range, the strength varies
linearly with the shear modulus [57] and as d−1/2 [58]. The grains in the range 1 µm–10 nm
(a range relevant to this study) deform by grain-boundary shear promoted by the pile-up of
dislocations that are restricted to their slip planes [58]. The strength still depends linearly on
d−1/2 with a positive slope. However, the dependence of strength on the shear modulus is no
longer linear. The following relation for the pressure and grain-size dependences of strength
can be derived from equation (19) of Conrad [58]:

2pmax = a0r(p) + a1[r(p)/d(p)]1/2. (5)

2pmax is taken as a measure of strength. r(p) is the ratio of the shear moduli at a pressure
p and 0.1 MPa, and d(p) is the pressure-dependent grain size;

a0 = αµ0bρ1/2
µ and (6)

a1 = (�F∗)1/2

(
µ0b
πv∗

)1/2

. (7)

The symbols ρµ, b, µ0, v∗, and �F∗ denote the dislocation density responsible for
the long-range internal stress, Burger’s vector, shear modulus at ambient pressure, activation
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Figure 6. 2 pmax/r(p) as a function of [r(p)d(p)]−1/2. Unfilled circles and diamonds indicate data
for c-Au and n-Au, respectively. Filled circles show the strength derived from the grain size versus
hardness data [42].

volume, and Helmlotz free activation energy, respectively. The symbol α (note the use of α

with different meaning in equation (3)) is a constant that relates flow stress to the dislocation
density. Since the present measurements are conducted at room temperature under static load,
the strain-rate-dependent terms from a1 are left out. The value of a0 is expected to differ
from sample to sample, since it contains dislocation density as one of the parameters. For this
reason, it is difficult to compare the results of fitting equation (5) to the data from different
samples. We first determined a0 from the 2pmax/r(p) versus [r(p)d(p)]−1/2 plot shown in
figure 6. Equation (5) suggests that the data set for each sample should lie on a straight line.
The a0-values, as determined from the intercepts of these plots, were 0.11 and 0.52 for c-Au
and n-Au, respectively. An independent estimate of strength can be obtained from the hardness
data. Many investigators (e.g. [50, 59]) have often used one third of the hardness as a measure
of the yield stress. A detailed discussion of the relationship between hardness and strength can
be found in many textbooks (e.g. [60]). The strength calculated from the hardness-grain-size
data [42] are also shown in figure 6. Since these data are at ambient pressure, r(p) = 1. The
a0-value for this data set was −0.2. The strength data on c-Au, n-Au and those derived from
the hardness measurements are compared in figure 7, which shows the [2pmax −a0r(p)] versus
[r(p)/d]1/2 plots. Equation (5) suggests that the data should lie on a straight line. It is seen
that the data on samples from three different sources lie on a single straight line. The grain
sizes of c-Au and n-Au are nearly equal at 30 GPa. If grain size and pressure determine the
strength, then the strengths of the two samples should be equal at 30 GPa. Contrary to this
expectation, figure 5 shows that the strength of n-Au is much higher. It may be noted that c-Au
and n-Au samples are from two different sources and the micro-structural features are expected
to be different, as these depend on the method of sample preparation. The differences in micro-
structural features of the two samples are possibly reflected in very different a0-values for c-Au
and n-Au.

5. Conclusions

The grain size decreases significantly on compression of the sample in a diamond anvil cell.
The reversibility of the grain size appears to be a feature of highly ductile materials and requires
further investigation for a better understanding. In contrast, brittle materials show a permanent
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reduction in the grain size in the initial stages of compression. The compressive strength is a
function of both pressure and grain size. The dislocation theory based equation relevant for
grain sizes in the range 1 µm to 10 nm fits the present data well. The agreement between the
strengths derived from the x-ray diffraction data and those from the hardness measurements
indicate that t and 2pmax are indeed measures of compressive strength. The grain-size effect on
strength derived from the high-pressure diffraction data should be considered in a quantitative
interpretation of the data.
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